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ABSTRACT

The Finite Element Method (FEM) is widely used in engineering and scientific computing, but its
pre-processing, solver configuration, and post-processing stages are often time-consuming and require
specialized knowledge. This paper proposes an automated solution framework, MooseAgent, for
the multi-physics simulation framework MOOSE, which combines large-scale pre-trained language
models (LLMs) with a multi-agent system. The framework uses LLMs to understand user-described
simulation requirements in natural language and employs task decomposition and multi-round
iterative verification strategies to automatically generate MOOSE input files. To improve accuracy
and reduce model hallucinations, the system builds and utilizes a vector database containing annotated
MOOSE input cards and function documentation. We conducted experimental evaluations on several
typical cases, including heat transfer, mechanics, phase field, and multi-physics coupling. The results
show that MooseAgent can automate the MOOSE simulation process to a certain extent, especially
demonstrating a high success rate when dealing with relatively simple single-physics problems. The
main contribution of this research is the proposal of a multi-agent automated framework for MOOSE,
which validates its potential in simplifying finite element simulation processes and lowering the user
barrier, providing new ideas for the development of intelligent finite element simulation software. The
code for the MooseAgent framework proposed in this paper has been open-sourced and is available at
https://github.com/taozhan18/MooseAgent.
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1 Introduction

The Finite Element Method (FEM) has extremely broad applications in the fields of engineering and scientific
computation, such as structural mechanics, heat conduction, electromagnetic fields, and multi-physics problems
involving fluid-solid coupling [6, 8, 5]. As a mature and highly modular multi-physics simulation framework, MOOSE
(Multiphysics Object Oriented Simulation Environment) provides researchers and engineers with a flexible numerical
solution interface, automatic differentiation capabilities, and a rich library of physical couplings. It has been widely
used in multiple fields, including nuclear energy, materials science, and biomechanics. However, with the increasing
scale of simulations and the growing complexity of coupled models, finite element simulations typically require a
significant amount of human effort and time in pre-processing (geometry and mesh generation, material and equation
settings), solver configuration, and post-processing visualization. Under the traditional workflow, researchers often need
to master script writing, parameter configuration, and numerical algorithms simultaneously. Any minor errors, such
as improper boundary condition settings, unreasonable mesh division, or incorrect material model calls, can lead to
distorted numerical results or even solver failure, posing a high barrier to entry for beginners and interdisciplinary users.

In recent years, with the rapid development of Natural Language Processing (NLP) technologies and Large Language
Models (LLMs), efforts have been made to explore how to leverage these general-purpose "agents" to assist and
automate scientific computation processes [7, 1, 15, 11]. In the field of Computational Fluid Dynamics (CFD), some
work has attempted to combine multi-agent systems with LLMs to achieve an integrated automation process from natural
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language requirements to mesh generation, solver settings, and post-processing script writing [2, 10]. Experiments
have shown that by adopting the approach of "task decomposition + multi-round iterative verification," the traditional
manual workflow can be transformed into semi-automated or fully automated operations carried out collaboratively
by agents. This significantly reduces the dependence on users’ professional background in numerical analysis and
improves usability and efficiency. However, there is still a lack of similar attempts in finite element software platforms,
especially in the area of multi-physics coupling modeling. The MOOSE framework also suffers from cumbersome
configuration and parameter tuning processes. If an agent system could be introduced into MOOSE and extended to
cater to its multi-physics characteristics, it would bring new opportunities for users with non-specialist backgrounds and
interdisciplinary research.

Based on this, this paper proposes an automated solution framework integrating large language models and multi-agent
systems for the MOOSE platform. The framework leverages large language models to accurately understand users’
simulation needs and aligns closely with user requirements through continuous feedback. By decomposing tasks and
conducting multiple rounds of iterative verification, the framework not only enhances its flexibility in handling complex
simulation tasks but also fully exploits the diverse functionalities of the MOOSE platform. Moreover, by constructing
a MOOSE database and incorporating retrieval augmentation techniques, the framework effectively reduces model
hallucination and improves result reliability. Through a series of numerical examples covering multiple fields, including
heat conduction, mechanics, phase field, and multiphysics coupling, the framework has demonstrated significant
advantages in terms of executability and accuracy, while also lowering the threshold for users’ expertise in the finite
element method (FEM) to a certain extent.

The main contributions of this paper are as follows:

• A multi-agent system for MOOSE is proposed, which uses large language models to automate the finite
element solution process from natural language, including pre-processing (mesh, material, and equation
settings), solver configuration, and post-processing.

• Multi-round iterative verification is combined with task decomposition to adapt to the diversity and complexity
of simulation tasks, automatically review and correct each sub-task, and improve the executability and stability
of the solution process.

• Systematic tests are conducted on several typical multi-physics cases to evaluate the success rate, numerical
accuracy, and requirements for computational resources and human interaction of this method, providing a
feasible approach for intelligent finite element simulation software.

2 Related Work

2.1 Multi-agent Framework

Multi-agent frameworks based on LLMs are becoming key tools for complex task automation and collaborative AI
systems. These frameworks can be broadly categorized into four main types based on encapsulation and automation.
First, frameworks like Langchain [12] and Langgraph [3] offer foundational components, but require developers to
manually code and manage agent interactions and workflows. This provides high flexibility and control for customized
collaboration, but demands more development effort. Second, frameworks such as CrewAI [3], AutoGen [13], and
MetaGPT [4] offer higher-level encapsulation. Users mainly define task goals and agent prompts, while the framework
handles inter-agent communication, task assignment, and collaboration using predefined roles and protocols, simplifying
development. Third, frameworks like Dify, Bisheng, and Coze achieve an even higher abstraction through graphical
user interfaces (UI), allowing users to build and manage multi-agent workflows without coding via visual nodes
and drag-and-drop configuration, suitable for non-programmers. Fourth, a more advanced research direction treats
multi-agent workflows as optimizable variables [16, 17]. Analogous to supervised learning, these frameworks aim for
models to automatically learn and find the best collaboration strategies and workflows, enabling dynamic adjustments
based on feedback for greater efficiency and robustness. Overall, LLM-based multi-agent frameworks are progressing
towards greater automation, ease of use, and intelligence, with different types catering to various needs, from finely
controlled complex tasks to rapid no-code prototyping and the future of self-optimizing workflows, showing significant
potential and broad applications.

Given the current technological maturity and controllability, this research chooses to adopt a multi-agent framework
based on LangGraph. This framework allows for the manual writing of interaction logic between multiple agents from
the bottom layer, thereby achieving highly customized and precise process control. This underlying control capability
provides greater flexibility for the research, enabling fine-tuning of the interactions within the multi-agent system
according to specific needs to meet the diverse requirements of complex task scenarios.
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2.2 Multi-Agent-Driven Software Agents

The application of LLM-based multi-agent frameworks is rapidly emerging across various domains. Particularly in
software agents, they significantly enhance software efficiency and accessibility by automating complex tasks and
simplifying user interaction. For instance, AutoFLUKA [9], an AI agent application, automates Monte Carlo simulation
workflows in FLUKA using the LangChain Python framework. This automation reduces manual intervention and errors,
streamlining the entire process from input generation and simulation execution to results processing and visualization.
In the field of Computational Fluid Dynamics (CFD), LLM agents are also demonstrating great potential. FoamPilot
[14] enhances the usability of FireFOAM by providing code insight through Retrieval Augmented Generation (RAG)
for efficient code navigation and summarization. It also interprets user requests in natural language to modify simulation
setups and manages simulation execution in High-Performance Computing (HPC) environments, offering preliminary
analysis of simulation results. MetaOpenFOAM [2] combines Chain of Thought (COT) decomposition and iterative
verification, making CFD simulation and post-processing more accessible to non-expert users through natural language
input. OpenFOAMGPT [10], an LLM-based agent designed for OpenFOAM, utilizes GPT-40 and a CoT-enabled
model to handle complex tasks, including zero-shot case setup, boundary condition modifications, turbulence model
adjustments, and code translation. These studies indicate that multi-agent-driven software agents are becoming a key
technology for improving the efficiency and user experience of complex software systems.

3 Method

3.1 Overall framework

The overall framework of MooseAgent is shown in Fig.1. In the initial step, the user describes the required simulation
task using natural language. The LLM parses the user’s requirements, clarifies ambiguous settings, and determines
the number of input cards and their specific tasks. Once the user confirms that the description meets their needs, the
process moves to the simulation task architecture step. In the architecture step, the system generates retrieval content
based on the simulation requirements and searches for relevant input cards in the vector knowledge base. The architect
refers to these input cards to generate Moose input cards that meet the simulation requirements. After all input cards
are generated, the system performs multiple rounds of error correction based on Moose’s output error messages and
rule-based syntax checks. If the model determines that the same error persists after multiple rounds of correction, the
correction process is terminated, and error information is returned with a prompt for the architect to adopt alternative
methods to avoid the error. The task ends when the input cards are successfully executed or the maximum number of
iterations is reached.

3.2 Database

The database primarily comprises two components: annotated input cards and the documentation for all MOOSE
functions.

We extracted over 8,000 input cards from the MOOSE repository. However, most of these input cards lack annotations,
originating from sources such as test cases of each MOOSE APP and official tutorials. Due to the absence of annotations,
direct retrieval of these input cards may lead to retrieval failures, or the model might misinterpret the meaning of the
input cards. Therefore, we specifically designed a workflow to automatically annotate these input cards, as illustrated in
Fig.2. First, unannotated input cards are randomly selected. Then, the MOOSE APPs used by these input cards are
analyzed. Next, the descriptions and usage of the APPs are queried from the documentation. Finally, annotated input
cards are generated using retrieval-augmented generation techniques. This annotation process is performed iteratively.
All annotated input cards are stored in JSON format, including the input card name, a summary of the input card’s
functions, and the annotated input card content.

MOOSE’s documentation system is powerful, capable of exporting the function input parameter descriptions for all
APPs using the dump command. However, function input parameter descriptions alone are insufficient for a full
understanding of the APP’s purpose. More detailed descriptions of each APP are scattered throughout the code
repository. Therefore, we developed a Python script to locate the detailed descriptions of each APP from the repository.
These descriptions are also stored in JSON format, including the APP name, APP function description, and descriptions
of the APP’s input parameters.
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Figure 1: Overall Framework of Moose Agent

Figure 2: Automatic annotation workflow
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4 Experiment

4.1 Experimental Setup

This experiment employs the langgraph framework to build a multi-agent collaborative workflow. Regarding model
selection, we utilize Deepseek-R1 as the reasoning model for the overall architecture of the input card, while the
remaining modules use Deepseek-V3. To reduce randomness and enhance the accuracy of the results, the temperature
of all models is set to 0.01. For RAG, we have chosen the BGE-M3 embedding model and the FAISS vector database,
employing similarity search for information retrieval. The maximum number of iterations in the experiment is set to 3.

To validate the effectiveness of the constructed framework, we designed the following 8 test cases:

• Steady-State Heat Conduction (HeatSteady): Consider a metal rod with a length of L = 1m, with its two
ends maintained at constant temperatures of 300K and 350K, respectively. The thermal conductivity k is
given as 10W/(m·K). Under this steady-state condition, the task is to calculate and output the temperature
distribution along the rod, presented as a function of temperature with respect to position.

• Transient Heat Conduction (HeatTran): Within a 1m × 1m square domain, the initial temperature is
uniformly distributed at 300K. The boundary conditions are as follows: the left and bottom boundaries
are maintained at 300K, the right boundary temperature is 500K, and the top boundary is adiabatic. The
material’s thermal conductivity k = 20W/(m·K), specific heat capacity cp = 1000 J/(kg·K), and density
ρ = 7850 kg/m3. The experiment will simulate a transient process of 50 s, and the temperature distribution
will be output every 10 s.

• Linear Elasticity (Elasticity): A rectangular plate with dimensions 2m × 1m is considered, with its left side
fixed and its right side subjected to a uniform tensile stress of 5MPa. The material is linearly elastic, with an
elastic modulus E = 200GPa and a Poisson’s ratio ν = 0.3. The objective is to calculate the stress and strain
fields within the plate and output the maximum principal stress and strain values.

• Plastic Strain (Plasticity): Consider a 1m × 1m square plate with its left edge fixed and a horizontal
displacement of 0.01m applied to its right edge. The material exhibits elastoplastic behavior, described
by a bilinear hardening model with the following parameters: yield stress σy = 250MPa, elastic modulus
E = 210GPa, and hardening modulus H = 1GPa. The experiment requires outputting the final plastic strain
distribution and identifying the regions where plastic deformation has occurred.

• Porous Media Flow (Porous): A cubic soil block with dimensions 1m × 1m × 1m is considered, with a
water head of 5m at the bottom and 1m at the top, and impermeable side boundaries. The permeability of the
soil is k = 10−5 m/s. The task is to calculate the steady-state flow field and pressure distribution within the
soil block.

• Phase Change Heat Conduction (PhaseChange): A 0.1-meter-long metal rod has one end maintained at 300
K and the other end at 200 K. The melting/freezing temperature is 250 K, with a latent heat L = 2× 105 J/kg.
The specific heat capacity cp is the same for both the solid and liquid phases, and the thermal conductivities
are κs = 30 (solid) and κL = 15 (liquid). The simulation runs for 500 seconds to track the movement of the
phase change front over time.

• Phase Field (PhaseField): This case aims to simulate the solidification process of a pure metal within a
two-dimensional rectangular region. The phase-field model is employed to simulate the solid-liquid phase
transition by solving the coupled evolution equations for the phase-field variable and the temperature field.
The boundary condition involves applying a low temperature below the solidification point on one side of the
rectangular region to drive solidification, with the initial condition set as the metal being entirely in a liquid
state. The experimental goal is to observe the formation and growth of the solid phase, as well as the evolution
of the solid-liquid interface and the temperature distribution.

• Thermal-Mechanical Coupling (ThermalMechanic): This case utilizes the Multiapp functionality to
simulate the thermal-structural coupling behavior of a two-dimensional rectangular thin plate. In the thermal
analysis part, one side of the thin plate is heated, while the other side is kept at a low temperature. In the
mechanical analysis part, one side of the thin plate is fixed, and the temperature distribution calculated by the
main application (thermal analysis) is used as a thermal load to analyze the thermal expansion and displacement
of the thin plate.

We employ the following 3 evaluation metrics to assess the experimental results:

• Success Rate: Defined as the ratio of the number of successfully run test cases to the total number of test
cases.
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• Token Usage: Refers to the total number of tokens consumed by the large models during the experiment.

• Productivity: Defined as the ratio of Token Usage to the number of code characters generated.

“‘latex

4.2 Experimental Results Analysis

Table1 summarizes the performance of MooseAgent in eight different test cases. In terms of success rate, the Steady
State Heat Conduction (HeatSteady), Linear Elasticity (Elasticity), and Phase Field (PhaseField) cases all achieved
a 100% success rate, indicating that MooseAgent performs excellently in handling these relatively mature physical
problems with many reference cases. The success rate for Transient Heat Conduction (HeatTran) is 80%, suggesting
that there is still room for improvement in the framework’s robustness when dealing with time-dependent complex
problems. The success rate for Plastic Strain (Plasticity) is 60%, indicating that the framework has a certain ability to
handle nonlinear material behavior. The success rates for Porous Media Flow (Porous) and Phase Change Heat Transfer
(PhaseChange) are both 60%, indicating that MooseAgent still has some ability to handle fluid flow and problems
involving changes of state, but may be sensitive to certain specific parameters or boundary conditions. It is worth
noting that the Thermal-Mechanic coupling (ThermalMechanic) case has a lower success rate of 40%, mainly because
thermal-mechanic coupling problems involve the strong coupling of two sub-problems, thermal analysis and mechanical
analysis, and the model configuration and parameter settings are more complex, which places higher demands on the
agent’s understanding and collaborative processing capabilities for multi-physics problems.

In terms of Token usage, there are significant differences between different cases. The Phase Field (PhaseField) case
has the highest Token usage, reaching 86696, which may be related to its need for longer simulation times and more
complex input parameter configurations. The Token usage for Porous Media Flow (Porous) and Thermal-Mechanic
coupling (ThermalMechanic) cases are also relatively high, at 79176 and 77020, respectively. Relatively speaking, the
Token usage for Steady State Heat Conduction (HeatSteady) and Plastic Strain (Plasticity) cases are lower, at 24673
and 15874, respectively, which may be related to the smaller scale and lower complexity of the problems.

The productivity metric reflects the number of Tokens consumed per code character generated, with lower values
typically indicating higher efficiency. As can be seen from Table1, the Porous Media Flow (Porous) and Phase Field
(PhaseField) cases have the highest productivity, at 39 and 40 respectively, which may mean that in these two cases, the
agent outputted a relatively large amount of effective code when generating the input card. The productivity for the
Plastic Strain (Plasticity) case is 8, and the productivity for the Thermal-Mechanic coupling (ThermalMechanic) case is
22. These values are relatively low, possibly indicating that the agent made more attempts and corrections when solving
these more complex problems, resulting in higher Token consumption but a relatively small amount of effective code
generated in the end.

Table 1: Performance of MooseAgent
Case Pass Token Productivity

HeatSteady 1 24673 28
HeatTran 0.8 37695 24
Elasticity 1 40857 16
Plasticity 0.6 15874 8

PhaseChange 0.6 23742 10
Porous 0.6 79176 39

PhaseField 1 86696 40
ThermalMechanic 0.4 77020 22

5 Conclusion

This paper proposes an automated solution framework MooseAgent for the MOOSE platform, which adopts a multi-
agent system that utilizes large language models to understand user requirements and generates executable MOOSE
input cards through task decomposition and multi-round iterative verification. MooseAgent incorporates MOOSE
knowledge stored in a vector database to enhance retrieval and reduce hallucinations. Experimental results show that
the framework has achieved high success rates for problems such as steady-state heat conduction and linear elasticity,
verifying its potential in automated finite element analysis. However, when dealing with complex multi-physics
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problems such as thermal-mechanic coupling, there is still room for improvement in the success rate. The main
contribution of this research is to explore the automated process from natural language to MOOSE simulation based on
technologies such as LLM, multi-agent systems, task decomposition, and multi-round iterative verification. Future
work will optimize knowledge retrieval and iteration strategies, and consider incorporating human feedback during the
iteration process to further improve the framework’s performance on complex problems.
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